Try GOLD - Free

MORE-THAN-MOORE SOC: RISC-V, Chiplets, And Heterogeneous Integration

Electronics For You

|

December 2023

Ride the More-than-Moore wave! Established CPU and GPU giants are already on board, but it is the emerging startups leveraging RISC-V, chiplets, and heterogeneous integration that hold the key to a future of unparalleled Al-friendly SoC development

MORE-THAN-MOORE SOC: RISC-V, Chiplets, And Heterogeneous Integration

More-than-Moore (MtM) is a concept and strategy in semiconductor design that extends beyond the traditional Moore's Law scaling of packing more transistors into a given silicon area (monolithic chips) to achieve performance gains. The MtM philosophy is fundamental as the physical and economic limits of traditional silicon scaling become apparent.

MtM aims to enable new applications by combining different technologies according to their functional needs rather than just focusing on making transistors smaller or faster. This strategy is increasingly seen as essential for the future of the semiconductor industry, enabling innovation in areas where silicon chips are running out of room to provide more performance gain.

The primary use of MtM is for system-on-a-chip (SoC) design and manufacturing, mainly because SoCs, sooner or later, will reach the reticle (photomask) limit. The reason is the theoretical EUV-based lithography reticle limit of 858mm², as the latest generation GPUs (following a monolithic approach) are already closer to 800mm².

It implies that there is little to no room to pack more transistors. Also, adopting the most advanced technology node to gain performance without increasing the area is slowly turning into a costly affair, with 3nm requiring more than $700 million to productise and 2nm needing more than $1 billion. Thus, there is a dire need to innovate SoC development.

MtM using RISC-V, chiplets, and heterogeneous integration

Out of all, the most promising combination of design and manufacturing approaches that will potentially speed up MtM adoption are RISC-V, chiplets, and heterogeneous integration.

MORE STORIES FROM Electronics For You

Electronics For You

Low-power, reliable transmitter chip

Researchers at MIT (United States) have developed a compact transmitter chip that reduces signal errors by a factor of four and extends battery life for IoT devices.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Leading Suppliers of MICROSCOPES FOR OC OF ELECTRONICS

Who are India's Leading Suppliers of Microscopes for Quality Control of Electronics? Here is the list...

time to read

5 mins

September 2025

Electronics For You

Electronics For You

Compact swarm-level AI drones navigation using neural network

Researchers at Shanghai Jiao Tong University (Shanghai, China) have developed a compact AI navigation system for drones.

time to read

1 min

September 2025

Electronics For You

Electronics For You

ML-based wireless power transfer

Researchers at Chiba University (Chiba, Japan) have developed a machine learning-based method to design wireless power transfer (WPT) systems that stay efficient and stable across varying loads.

time to read

1 min

September 2025

Electronics For You

Wi-Fi that knows who you are

WhoFi, developed at La Sapienza University (Rome, Italy), is a Wi-Fi-based surveillance system that identifies individuals by how their bodies disrupt wireless signals; no cameras, contact, or consent is needed.

time to read

1 min

September 2025

Electronics For You

Electronics For You

3mm-thick holographic display that delivers lifelike 3D visuals

Stanford researchers (California) have unveiled a 3mm-thick holographic display that delivers lifelike 3D visuals using true holography, not stereoscopy.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Smart Trolley Robot 'TROLL.E 1.0'

Robots now play a vital role across modern society, often described as human-like due to their growing presence in social and commercial environments.

time to read

3 mins

September 2025

Electronics For You

Compact metal-free thin-film supercapacitor delivers 200V

GDUT (Guangzhou, China )researchers have developed a metal-free thin-film supercapacitor (TFSC) stack that delivers 200V in just 3.8cm³.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Al-powered self-driving lab tests materials 10x faster

Researchers at NC State (Raleigh, North Carolina) have developed an Al-powered self-driving lab that uses dynamicstate flow and real-time data to test materials 10x faster than traditional labs.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Breakthrough in co-packaging photonic and electronic chips

The MIT (United States) FUTUR-IC team has developed a breakthrough chip packaging method that co-integrates electronics and photonics using passive alignment.

time to read

1 min

September 2025

Translate

Share

-
+

Change font size