Try GOLD - Free

A PYTHON BASED GUI For AM Modulation

Electronics For You

|

February 2023

Amplitude modulation (AM) is a signal modulation technique that is widely used by radio stations for transmitting their programmes.

A PYTHON BASED GUI For AM Modulation

This project proposes a Python GUI based simulator to study AM. A user can vary various parameters—such as modulation index, amplitude and frequency of modulating signal, and carrier signal—and observe the output. The project can be used to simulate the signal modulation by radio engineers for designing different carrier signals and their modulation and demodulation.

This GUI is developed in Python 3.10.1 by using Jupyter Notebook. As only two components are used for the project, as shown in the bill of material, there is no need of any circuit diagram. Just connect the LCD to Raspberry Pi via an HDMI cable connector.

For amplitude modulation, the carrier waveform is modulated according to instantaneous amplitude of the message (baseband) signal. To understand, let us consider a sinusoidal wave as the message signal that needs to be transmitted. Let us say, the amplitude of message signal is Am and its frequency is fm. The mathematical time-domain representation of the message signal would be: m(t) = Am.cos (2π/ƒmt) ........Eq 1

The carrier signal is a high frequency radio wave with amplitude Ac and frequency fc, which is represented by: c(t) = Ac.cos (2π/ƒct) ........Eq 2

The equation of modulated waveform is:

The modulation index defines modulation level, which can be defined as:

MORE STORIES FROM Electronics For You

Electronics For You

Low-power, reliable transmitter chip

Researchers at MIT (United States) have developed a compact transmitter chip that reduces signal errors by a factor of four and extends battery life for IoT devices.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Leading Suppliers of MICROSCOPES FOR OC OF ELECTRONICS

Who are India's Leading Suppliers of Microscopes for Quality Control of Electronics? Here is the list...

time to read

5 mins

September 2025

Electronics For You

Electronics For You

Compact swarm-level AI drones navigation using neural network

Researchers at Shanghai Jiao Tong University (Shanghai, China) have developed a compact AI navigation system for drones.

time to read

1 min

September 2025

Electronics For You

Electronics For You

ML-based wireless power transfer

Researchers at Chiba University (Chiba, Japan) have developed a machine learning-based method to design wireless power transfer (WPT) systems that stay efficient and stable across varying loads.

time to read

1 min

September 2025

Electronics For You

Wi-Fi that knows who you are

WhoFi, developed at La Sapienza University (Rome, Italy), is a Wi-Fi-based surveillance system that identifies individuals by how their bodies disrupt wireless signals; no cameras, contact, or consent is needed.

time to read

1 min

September 2025

Electronics For You

Electronics For You

3mm-thick holographic display that delivers lifelike 3D visuals

Stanford researchers (California) have unveiled a 3mm-thick holographic display that delivers lifelike 3D visuals using true holography, not stereoscopy.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Smart Trolley Robot 'TROLL.E 1.0'

Robots now play a vital role across modern society, often described as human-like due to their growing presence in social and commercial environments.

time to read

3 mins

September 2025

Electronics For You

Compact metal-free thin-film supercapacitor delivers 200V

GDUT (Guangzhou, China )researchers have developed a metal-free thin-film supercapacitor (TFSC) stack that delivers 200V in just 3.8cm³.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Al-powered self-driving lab tests materials 10x faster

Researchers at NC State (Raleigh, North Carolina) have developed an Al-powered self-driving lab that uses dynamicstate flow and real-time data to test materials 10x faster than traditional labs.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Breakthrough in co-packaging photonic and electronic chips

The MIT (United States) FUTUR-IC team has developed a breakthrough chip packaging method that co-integrates electronics and photonics using passive alignment.

time to read

1 min

September 2025

Translate

Share

-
+

Change font size