Intentar ORO - Gratis
Unleashing The Power Of Robotics With RobotCore FRAMEWORK
Electronics For You
|March 2023
There has not been a better time to supercharge your robots. Meet RobotCore framework, a new open architecture for hardware acceleration in ROS2 to assist you with that. This article describes the powerful capabilities of RobotCore framework and how it can take your robots to the next level
-

The RobotCore framework helps in leveraging hardware acceleration and building custom compute architectures for robots, or IP cores, which make the robots faster, more deterministic, and/or power efficient. RobotCore is a robot-specific processing unit that helps map Robot Operating System (ROS) computational graphs to its CPUs, GPU, and FPGA efficiently to get the best performance. The RobotCore framework is intended to be a modular and extendable framework.
Before moving forward, let us be clear about hardware acceleration. Hardware acceleration is the process of offloading certain computational task to specialised hardware so that you can perform those tasks more efficiently. For example, let us say you are using a simulation software or playing a game, then you would want graphical processing units (GPUs) in your system that could handle the render with ease.
That is what GPU-enabled hardware acceleration is when it comes to simulation software and games. In the context of robotics, hardware acceleration can help you create faster and more power-efficient robots. This is done through various accelerator platforms.
Let us now understand how hardware acceleration is used in robotics. We all have seen the Atlas robot by Boston dynamics. The Atlas uses hardware acceleration in the perception stack to navigate through the obstacles. It uses a time of flight sensor at high frequency to detect and extract surfaces from the environment and then use the navigation stack to navigate and control stack to move through the environment.
Esta historia es de la edición March 2023 de Electronics For You.
Suscríbete a Magzter GOLD para acceder a miles de historias premium seleccionadas y a más de 9000 revistas y periódicos.
¿Ya eres suscriptor? Iniciar sesión
MÁS HISTORIAS DE Electronics For You
Electronics For You
Low-power, reliable transmitter chip
Researchers at MIT (United States) have developed a compact transmitter chip that reduces signal errors by a factor of four and extends battery life for IoT devices.
1 min
September 2025

Electronics For You
Leading Suppliers of MICROSCOPES FOR OC OF ELECTRONICS
Who are India's Leading Suppliers of Microscopes for Quality Control of Electronics? Here is the list...
5 mins
September 2025

Electronics For You
Compact swarm-level AI drones navigation using neural network
Researchers at Shanghai Jiao Tong University (Shanghai, China) have developed a compact AI navigation system for drones.
1 min
September 2025

Electronics For You
ML-based wireless power transfer
Researchers at Chiba University (Chiba, Japan) have developed a machine learning-based method to design wireless power transfer (WPT) systems that stay efficient and stable across varying loads.
1 min
September 2025
Electronics For You
Wi-Fi that knows who you are
WhoFi, developed at La Sapienza University (Rome, Italy), is a Wi-Fi-based surveillance system that identifies individuals by how their bodies disrupt wireless signals; no cameras, contact, or consent is needed.
1 min
September 2025

Electronics For You
3mm-thick holographic display that delivers lifelike 3D visuals
Stanford researchers (California) have unveiled a 3mm-thick holographic display that delivers lifelike 3D visuals using true holography, not stereoscopy.
1 min
September 2025

Electronics For You
Smart Trolley Robot 'TROLL.E 1.0'
Robots now play a vital role across modern society, often described as human-like due to their growing presence in social and commercial environments.
3 mins
September 2025
Electronics For You
Compact metal-free thin-film supercapacitor delivers 200V
GDUT (Guangzhou, China )researchers have developed a metal-free thin-film supercapacitor (TFSC) stack that delivers 200V in just 3.8cm³.
1 min
September 2025

Electronics For You
Al-powered self-driving lab tests materials 10x faster
Researchers at NC State (Raleigh, North Carolina) have developed an Al-powered self-driving lab that uses dynamicstate flow and real-time data to test materials 10x faster than traditional labs.
1 min
September 2025

Electronics For You
Breakthrough in co-packaging photonic and electronic chips
The MIT (United States) FUTUR-IC team has developed a breakthrough chip packaging method that co-integrates electronics and photonics using passive alignment.
1 min
September 2025
Translate
Change font size