Denemek ALTIN - Özgür

Unleashing The Power Of Robotics With RobotCore FRAMEWORK

Electronics For You

|

March 2023

There has not been a better time to supercharge your robots. Meet RobotCore framework, a new open architecture for hardware acceleration in ROS2 to assist you with that. This article describes the powerful capabilities of RobotCore framework and how it can take your robots to the next level

Unleashing The Power Of Robotics With RobotCore FRAMEWORK

The RobotCore framework helps in leveraging hardware acceleration and building custom compute architectures for robots, or IP cores, which make the robots faster, more deterministic, and/or power efficient. RobotCore is a robot-specific processing unit that helps map Robot Operating System (ROS) computational graphs to its CPUs, GPU, and FPGA efficiently to get the best performance. The RobotCore framework is intended to be a modular and extendable framework.

Before moving forward, let us be clear about hardware acceleration. Hardware acceleration is the process of offloading certain computational task to specialised hardware so that you can perform those tasks more efficiently. For example, let us say you are using a simulation software or playing a game, then you would want graphical processing units (GPUs) in your system that could handle the render with ease.

That is what GPU-enabled hardware acceleration is when it comes to simulation software and games. In the context of robotics, hardware acceleration can help you create faster and more power-efficient robots. This is done through various accelerator platforms.

Let us now understand how hardware acceleration is used in robotics. We all have seen the Atlas robot by Boston dynamics. The Atlas uses hardware acceleration in the perception stack to navigate through the obstacles. It uses a time of flight sensor at high frequency to detect and extract surfaces from the environment and then use the navigation stack to navigate and control stack to move through the environment.

Electronics For You'den DAHA FAZLA HİKAYE

Electronics For You

Low-power, reliable transmitter chip

Researchers at MIT (United States) have developed a compact transmitter chip that reduces signal errors by a factor of four and extends battery life for IoT devices.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Leading Suppliers of MICROSCOPES FOR OC OF ELECTRONICS

Who are India's Leading Suppliers of Microscopes for Quality Control of Electronics? Here is the list...

time to read

5 mins

September 2025

Electronics For You

Electronics For You

Compact swarm-level AI drones navigation using neural network

Researchers at Shanghai Jiao Tong University (Shanghai, China) have developed a compact AI navigation system for drones.

time to read

1 min

September 2025

Electronics For You

Electronics For You

ML-based wireless power transfer

Researchers at Chiba University (Chiba, Japan) have developed a machine learning-based method to design wireless power transfer (WPT) systems that stay efficient and stable across varying loads.

time to read

1 min

September 2025

Electronics For You

Wi-Fi that knows who you are

WhoFi, developed at La Sapienza University (Rome, Italy), is a Wi-Fi-based surveillance system that identifies individuals by how their bodies disrupt wireless signals; no cameras, contact, or consent is needed.

time to read

1 min

September 2025

Electronics For You

Electronics For You

3mm-thick holographic display that delivers lifelike 3D visuals

Stanford researchers (California) have unveiled a 3mm-thick holographic display that delivers lifelike 3D visuals using true holography, not stereoscopy.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Smart Trolley Robot 'TROLL.E 1.0'

Robots now play a vital role across modern society, often described as human-like due to their growing presence in social and commercial environments.

time to read

3 mins

September 2025

Electronics For You

Compact metal-free thin-film supercapacitor delivers 200V

GDUT (Guangzhou, China )researchers have developed a metal-free thin-film supercapacitor (TFSC) stack that delivers 200V in just 3.8cm³.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Al-powered self-driving lab tests materials 10x faster

Researchers at NC State (Raleigh, North Carolina) have developed an Al-powered self-driving lab that uses dynamicstate flow and real-time data to test materials 10x faster than traditional labs.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Breakthrough in co-packaging photonic and electronic chips

The MIT (United States) FUTUR-IC team has developed a breakthrough chip packaging method that co-integrates electronics and photonics using passive alignment.

time to read

1 min

September 2025

Translate

Share

-
+

Change font size