Try GOLD - Free
Why Industries Are Shifting FROM SILICON TO SILICON CARBIDE For Power Electronics
Electronics For You
|July 2024
Silicon carbide (SiC) revolutionises power semiconductors, cutting switching losses by up to 90% and enhancing efficiency and compactness. As demand for electric mobility and sustainable energy grows, SiC drives a greener, more efficient future.

With its enhanced efficiency and durability, SiC is not just a material; it’s the cornerstone of sustainable technological progress. It improves the overall performance of electronic components, positioning itself as a critical element in the future of high-power applications.
A webinar hosted by Diotec and IBS Electronics highlighted SiC’s advantages over traditional silicon in applications like EV chargers and solar inverters.
SiC technology is revolutionising various sectors with its capabilities in high voltage and high frequency switching applications, which are essential for electric vehicle charging and solar inverters. Discussions on the latest SiC MOSFETs and Schottky diodes demonstrated their significant impact on efficiency and performance, making SiC a pivotal element in the future of power electronics.
Silicon carbide is more expensive than traditional silicon, yet for many manufacturers, its benefits far outweigh the cost. With an electrical breakdown field of 2.8 x 106V/ cm, SiC exhibits a ten times higher tolerance than silicon’s 3.0 x 105V/cm, enabling higher withstand voltages and efficiencies due to its low ‘on’ resistance. The bandgap energy of SiC is 3.26eV, three times higher than silicon’s 1.12eV, which supports higher operating temperatures and boosts reliability. Additionally, SiC’s electron drift velocity of 2.2 x 107cm/s is double that of silicon, facilitating faster switching, which can lead to size reductions and higher operating frequencies in devices. Moreover, SiC’s thermal conductivity is 4.9W/cmK, three times that of silicon, leading to a lower temperature rise and superior thermal management in applications.

This story is from the July 2024 edition of Electronics For You.
Subscribe to Magzter GOLD to access thousands of curated premium stories, and 9,500+ magazines and newspapers.
Already a subscriber? Sign In
MORE STORIES FROM Electronics For You
Electronics For You
Low-power, reliable transmitter chip
Researchers at MIT (United States) have developed a compact transmitter chip that reduces signal errors by a factor of four and extends battery life for IoT devices.
1 min
September 2025

Electronics For You
Leading Suppliers of MICROSCOPES FOR OC OF ELECTRONICS
Who are India's Leading Suppliers of Microscopes for Quality Control of Electronics? Here is the list...
5 mins
September 2025

Electronics For You
Compact swarm-level AI drones navigation using neural network
Researchers at Shanghai Jiao Tong University (Shanghai, China) have developed a compact AI navigation system for drones.
1 min
September 2025

Electronics For You
ML-based wireless power transfer
Researchers at Chiba University (Chiba, Japan) have developed a machine learning-based method to design wireless power transfer (WPT) systems that stay efficient and stable across varying loads.
1 min
September 2025
Electronics For You
Wi-Fi that knows who you are
WhoFi, developed at La Sapienza University (Rome, Italy), is a Wi-Fi-based surveillance system that identifies individuals by how their bodies disrupt wireless signals; no cameras, contact, or consent is needed.
1 min
September 2025

Electronics For You
3mm-thick holographic display that delivers lifelike 3D visuals
Stanford researchers (California) have unveiled a 3mm-thick holographic display that delivers lifelike 3D visuals using true holography, not stereoscopy.
1 min
September 2025

Electronics For You
Smart Trolley Robot 'TROLL.E 1.0'
Robots now play a vital role across modern society, often described as human-like due to their growing presence in social and commercial environments.
3 mins
September 2025
Electronics For You
Compact metal-free thin-film supercapacitor delivers 200V
GDUT (Guangzhou, China )researchers have developed a metal-free thin-film supercapacitor (TFSC) stack that delivers 200V in just 3.8cm³.
1 min
September 2025

Electronics For You
Al-powered self-driving lab tests materials 10x faster
Researchers at NC State (Raleigh, North Carolina) have developed an Al-powered self-driving lab that uses dynamicstate flow and real-time data to test materials 10x faster than traditional labs.
1 min
September 2025

Electronics For You
Breakthrough in co-packaging photonic and electronic chips
The MIT (United States) FUTUR-IC team has developed a breakthrough chip packaging method that co-integrates electronics and photonics using passive alignment.
1 min
September 2025
Listen
Translate
Change font size