Prøve GULL - Gratis

QUANTUM COMPUTING AND AI: Partnering To Transform Tech

Electronics For You

|

May 2025

Quantum computing has the potential to significantly transform artificial intelligence due to its exponentially faster problem-solving capabilities and capacity to process enormous quantities of data compared to classical computers.

QUANTUM COMPUTING AND AI: Partnering To Transform Tech

The strength of quantum comput-ing resides in its capacity to utilise qubits, or quantum bits, which can exist in numerous states concurrently. This parallelism brings about a paradigm shift in artificial intelligence by aiding the swift implementation of algorithms that require significant computational resources on traditional hardware.

Quantum AI systems are composed of several architectural components that integrate AI and quantum computing techniques in a synergistic manner. By utilising principles such as superposition, entanglement, and interference, the quantum processing unit (QPU) executes quantum algorithms and conducts quantum operations on qubits. The QPU is the central component of the system.

The quantum software stack comprises libraries, programming languages, and development frameworks specifically designed for artificial intelligence applications. Qiskit, TensorFlow Quantum, and PennyLane are a few instances of frameworks that aid in the formulation and optimisation of algorithms.

Quantum data structures refer to algorithms and structures that have been specifically engineered to efficiently represent and manipulate quantum data. These frameworks facilitate the manipulation, retrieval, and storage of quantum data, which is of the utmost importance for tasks involving quantum machine learning and pattern recognition.

Notwithstanding its potential, quantum Al encounters a number of obstacles that impede its extensive implementation and scalability.

In order to guarantee the dependability and precision of computations, robust error correction techniques and fault-tolerant quantum hardware are required for quantum systems, as these are susceptible to noise, decoherence, and errors.

FLERE HISTORIER FRA Electronics For You

Electronics For You

Low-power, reliable transmitter chip

Researchers at MIT (United States) have developed a compact transmitter chip that reduces signal errors by a factor of four and extends battery life for IoT devices.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Leading Suppliers of MICROSCOPES FOR OC OF ELECTRONICS

Who are India's Leading Suppliers of Microscopes for Quality Control of Electronics? Here is the list...

time to read

5 mins

September 2025

Electronics For You

Electronics For You

Compact swarm-level AI drones navigation using neural network

Researchers at Shanghai Jiao Tong University (Shanghai, China) have developed a compact AI navigation system for drones.

time to read

1 min

September 2025

Electronics For You

Electronics For You

ML-based wireless power transfer

Researchers at Chiba University (Chiba, Japan) have developed a machine learning-based method to design wireless power transfer (WPT) systems that stay efficient and stable across varying loads.

time to read

1 min

September 2025

Electronics For You

Wi-Fi that knows who you are

WhoFi, developed at La Sapienza University (Rome, Italy), is a Wi-Fi-based surveillance system that identifies individuals by how their bodies disrupt wireless signals; no cameras, contact, or consent is needed.

time to read

1 min

September 2025

Electronics For You

Electronics For You

3mm-thick holographic display that delivers lifelike 3D visuals

Stanford researchers (California) have unveiled a 3mm-thick holographic display that delivers lifelike 3D visuals using true holography, not stereoscopy.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Smart Trolley Robot 'TROLL.E 1.0'

Robots now play a vital role across modern society, often described as human-like due to their growing presence in social and commercial environments.

time to read

3 mins

September 2025

Electronics For You

Compact metal-free thin-film supercapacitor delivers 200V

GDUT (Guangzhou, China )researchers have developed a metal-free thin-film supercapacitor (TFSC) stack that delivers 200V in just 3.8cm³.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Al-powered self-driving lab tests materials 10x faster

Researchers at NC State (Raleigh, North Carolina) have developed an Al-powered self-driving lab that uses dynamicstate flow and real-time data to test materials 10x faster than traditional labs.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Breakthrough in co-packaging photonic and electronic chips

The MIT (United States) FUTUR-IC team has developed a breakthrough chip packaging method that co-integrates electronics and photonics using passive alignment.

time to read

1 min

September 2025

Listen

Translate

Share

-
+

Change font size