Prøve GULL - Gratis

ENABLING INDUSTRIAL SENSORS For Edge Computing Using EdgeX

Electronics For You

|

April 2023

For industrial prototyping and design, we often need industrial-grade sensors devices plus industrial platforms like EdgeX.

- VIJAY KUMAR GOPU

ENABLING INDUSTRIAL SENSORS For Edge Computing Using EdgeX

But interfacing and using those industrial-grade sensors with our known boards is very difficult and unknown to us. So here we use the industrial platform Edgex and industrial sensor and interface them with the known Raspberry Pi.

Here we read the temperature and humidity values of the SHT20 sensor and leverage the EdgeX framework running on Raspberry Pi to provide gateway functionality. Using EdgeX framework microservices, we process the sensor data and send it to the cloud. After that we actuate LEDs to on/off when temperature readings cross threshold values. The author's prototype is shown in Fig. 1.

EdgeX framework speeds time to market by providing replaceable reference services for device-data ingestion, normalization, edge intelligence, and sharing to support new IoT data services and advanced edge computing applications. The scope of this case study is to leverage and exercise the functionality of the EdgeX framework and demonstrate monitoring temperature and humidity sensors. Industrial-grade temperature and humidity transmitter SHT20 is used for the case study.

Typical block diagram using EdgeX in Fig. 2 shows the high-level block diagram for edge computing using EdgeX. It is taken from the image source https://docs.edgexfoundry. org/1.3/general/EdgeX_deployments png

Prequestie setup

For using EdgeX and industrial temperature sensor we need the Ubuntu operating system (OS) for Raspberry Pi 4. The latest Ubuntu OS can be downloaded from the link below and the SD card can be prepared by following the steps given therein.

https://ubuntu.com/tutorials/ how-to-install-ubuntu-on-your-raspberry-pi#1-overview

Ubuntu installation

FLERE HISTORIER FRA Electronics For You

Electronics For You

Low-power, reliable transmitter chip

Researchers at MIT (United States) have developed a compact transmitter chip that reduces signal errors by a factor of four and extends battery life for IoT devices.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Leading Suppliers of MICROSCOPES FOR OC OF ELECTRONICS

Who are India's Leading Suppliers of Microscopes for Quality Control of Electronics? Here is the list...

time to read

5 mins

September 2025

Electronics For You

Electronics For You

Compact swarm-level AI drones navigation using neural network

Researchers at Shanghai Jiao Tong University (Shanghai, China) have developed a compact AI navigation system for drones.

time to read

1 min

September 2025

Electronics For You

Electronics For You

ML-based wireless power transfer

Researchers at Chiba University (Chiba, Japan) have developed a machine learning-based method to design wireless power transfer (WPT) systems that stay efficient and stable across varying loads.

time to read

1 min

September 2025

Electronics For You

Wi-Fi that knows who you are

WhoFi, developed at La Sapienza University (Rome, Italy), is a Wi-Fi-based surveillance system that identifies individuals by how their bodies disrupt wireless signals; no cameras, contact, or consent is needed.

time to read

1 min

September 2025

Electronics For You

Electronics For You

3mm-thick holographic display that delivers lifelike 3D visuals

Stanford researchers (California) have unveiled a 3mm-thick holographic display that delivers lifelike 3D visuals using true holography, not stereoscopy.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Smart Trolley Robot 'TROLL.E 1.0'

Robots now play a vital role across modern society, often described as human-like due to their growing presence in social and commercial environments.

time to read

3 mins

September 2025

Electronics For You

Compact metal-free thin-film supercapacitor delivers 200V

GDUT (Guangzhou, China )researchers have developed a metal-free thin-film supercapacitor (TFSC) stack that delivers 200V in just 3.8cm³.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Al-powered self-driving lab tests materials 10x faster

Researchers at NC State (Raleigh, North Carolina) have developed an Al-powered self-driving lab that uses dynamicstate flow and real-time data to test materials 10x faster than traditional labs.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Breakthrough in co-packaging photonic and electronic chips

The MIT (United States) FUTUR-IC team has developed a breakthrough chip packaging method that co-integrates electronics and photonics using passive alignment.

time to read

1 min

September 2025

Translate

Share

-
+

Change font size