Prøve GULL - Gratis

DISRUPTING THE INDUSTRIAL METAVERSE Using Open Private 5G And Edge

Electronics For You

|

December 2022

5G is seemingly the next big thing of the current decade, so it is about time the world adapts to its offerings and moves ahead along with it. Let us try to understand how it will affect the ongoing industrial revolution or Industry 4.0

- ABHIJIT CHAUDHARY

DISRUPTING THE INDUSTRIAL METAVERSE Using Open Private 5G And Edge

Today, manufacturing is the first thought that comes to our minds when we look at an industrial setup that predominantly consists of mining and power grid. In order to digitise the industry entirely you need to ensure that all the Internet of Things (IoT) devices, robots, and drones across the entire country are connected. You need to run real-time applications to enable the strict need for industrial applications, hence, creating a need for reliable connectivity that supports high bandwidth and low latency at the same time.

Let us look at a few reasons for requiring these applications:

Enhanced mobile broadband: 

• 20/10 Gbps DL/UL

• 4ms user plane latency

• Mobility up to 500km/hr 

Ultra-reliable low latency communication:

• 1ms user plane latency

• Highly secure/resilient

• 0ms mobile interruption time/always available

Massive machine-type communication:

• 1 million devices per km square

• 10+ years battery life

• 20dB coverage enhancement

Private 5G and edge cloud may disrupt emerging technologies

A Wi-Fi network is most suitable for the indoors, but it is not scalable when you have to cover it on a 10 square kilometre area. To do that you will have to put a Wi-Fi modem at every 10 to 20 metres, which is impractical and costly at the same time. In this case, a cellular network is the most appropriate option.

We already have working 4G networks. These networks are predominantly public networks and not private networks with an enterprise. Similarly, cloud is also not physically present within an enterprise.

FLERE HISTORIER FRA Electronics For You

Electronics For You

Low-power, reliable transmitter chip

Researchers at MIT (United States) have developed a compact transmitter chip that reduces signal errors by a factor of four and extends battery life for IoT devices.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Leading Suppliers of MICROSCOPES FOR OC OF ELECTRONICS

Who are India's Leading Suppliers of Microscopes for Quality Control of Electronics? Here is the list...

time to read

5 mins

September 2025

Electronics For You

Electronics For You

Compact swarm-level AI drones navigation using neural network

Researchers at Shanghai Jiao Tong University (Shanghai, China) have developed a compact AI navigation system for drones.

time to read

1 min

September 2025

Electronics For You

Electronics For You

ML-based wireless power transfer

Researchers at Chiba University (Chiba, Japan) have developed a machine learning-based method to design wireless power transfer (WPT) systems that stay efficient and stable across varying loads.

time to read

1 min

September 2025

Electronics For You

Wi-Fi that knows who you are

WhoFi, developed at La Sapienza University (Rome, Italy), is a Wi-Fi-based surveillance system that identifies individuals by how their bodies disrupt wireless signals; no cameras, contact, or consent is needed.

time to read

1 min

September 2025

Electronics For You

Electronics For You

3mm-thick holographic display that delivers lifelike 3D visuals

Stanford researchers (California) have unveiled a 3mm-thick holographic display that delivers lifelike 3D visuals using true holography, not stereoscopy.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Smart Trolley Robot 'TROLL.E 1.0'

Robots now play a vital role across modern society, often described as human-like due to their growing presence in social and commercial environments.

time to read

3 mins

September 2025

Electronics For You

Compact metal-free thin-film supercapacitor delivers 200V

GDUT (Guangzhou, China )researchers have developed a metal-free thin-film supercapacitor (TFSC) stack that delivers 200V in just 3.8cm³.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Al-powered self-driving lab tests materials 10x faster

Researchers at NC State (Raleigh, North Carolina) have developed an Al-powered self-driving lab that uses dynamicstate flow and real-time data to test materials 10x faster than traditional labs.

time to read

1 min

September 2025

Electronics For You

Electronics For You

Breakthrough in co-packaging photonic and electronic chips

The MIT (United States) FUTUR-IC team has developed a breakthrough chip packaging method that co-integrates electronics and photonics using passive alignment.

time to read

1 min

September 2025

Translate

Share

-
+

Change font size