Prøve GULL - Gratis
Machine Learning with Python - First Edition 2018

Gå ubegrenset med Magzter GOLD
Lese Machine Learning with Python sammen med 9000+ andre magasiner og aviser med bare ett abonnement
Se katalogAbonner kun på Machine Learning with Python
Avbryt når som helst.
(Ingen forpliktelser) ⓘHvis du ikke er fornøyd med abonnementet, kan du sende oss en e-post på help@magzter.com innen 7 dager etter abonnementets startdato for full refusjon. Ingen spørsmål - lover! (Merk: Gjelder ikke for enkeltutgavekjøp)
Digitalt abonnement
Øyeblikkelig tilgang ⓘAbonner nå for å begynne å lese umiddelbart på Magzter-nettstedet, iOS, Android og Amazon-appene.
I dette nummeret
First Edition 2018
Machine Learning with Python Description:
Develop and Implement your own Machine Learning Models to solve real world problems
Key Features
● Introduction to Machine Learning, Python and Jupyter
● Learn about Feature Engineering and Data Visualization using real world data sets
● Learn various regression and classification techniques
● Deep Learning and Neural network concepts and practical covered
● Text Analysis, Recommendation engines and Time Series Analysis
● Jupyter notebook scripts are provided with dataset used to test and try the algorithms
Description
This book provides concept of machine learning with mathematical explanation and programming examples. Every chapter starts with fundamentals of the technique and working example on real world dataset. Along with the advice on applying algorithms, each technique is provided with advantages and disadvantages on the data.
In this book we provide code examples in python. Python is the most suitable and worldwide accepted language for this. First, it is free and open source. It contains very good support from open community. It contains a lot of library, so you don’t need to code everything. Also, it is scalable for large amount of data and suitable for big data technologies.
What will you learn
Building machine learning model which is used in industries to solve data related problems.
Who this book is for
This book is helpful for all types of readers. Either you want to start in machine learning or want to learn the concepts more or practice with the code, it provides everything. We recommend users to learn the concept and practice it using sample code to get full of this book.
Table of Contents
1. Understanding Python
2. Feature Engineering
3. Data Visualisation
4. Basic and Advance Regression techniques
5. Classification
6. Un Supervised Learning
7. Text Analysis
8. Neural Network and Deep Learning
9. Recommendation System
10. Time Series Analysis
About the Author
Abhishek Vijayvargia is a Data Scientist. He worked in IT industry and helped in solving real time problems related to data science and Machine Learning. He worked on analytics problems related to transportation, government process, manufacturing, oil and gas, IoT, pharmaceuticals, shipping. He has completed his Masters from Indian Institute of Technology(IIT), Kanpur in Artificial Intelligence. His research interests are distributed Machine Learning, Deep Learning, Stream Processing and Blockchain. He worked as mentor for various machine learning projects and trained others in Algorithm, Competitive Programming and Data Science.
His LinkedIn profile: https://www.linkedin.com/in/avijayvargiaDevelop and Implement your own Machine Learning Models to solve real world problems
Key Features
● Introduction to Machine Learning, Python and Jupyter
● Learn about Feature Engineering and Data Visualization using real world data sets
● Learn various regression and classification techniques
● Deep Learning and Neural network concepts and practical covered
● Text Analysis, Recommendation engines and Time Series Analysis
● Jupyter notebook scripts are provided with dataset used to test and try the algorithms
Description
This book provides concept of machine learning with mathematical explanation and programming examples. Every chapter starts with fundamentals of the technique and working example on real world dataset. Along with the advice on applying algorithms, each technique is provided with advantages and disadvantages on the data.
In this book we provide code examples in python. Python is the most suitable and worldwide accepted language for this. First, it is free and open source. It contains very good support from open community. It contains a lot of library, so you don’t need to code everything. Also, it is scalable for large amount of data and suitable for big data technologies.
What will you learn
Building machine learning model which is used in industries to solve data related problems.
Who this book is for
This book is helpful for all types of readers. Either you want to start in machine learning or want to learn the concepts more or practice with the code, it provides everything. We recommend users to learn the concept and practice it using sample code to get full of this book.
Table of Contents
1. Understanding Python
2. Feature Engineering
3. Data Visualisation
4. Basic and Advance Regression techniques
5. Classification
6. Un Supervised Learning
7. Text Analysis
8. Neural Network and Deep Learning
9. Recommendation System
10. Time Series Analysis
About the Author
Abhishek Vijayvargia is a Data Scientist. He worked in IT industry and helped in solving real time problems related to data science and Machine Learning. He worked on analytics problems related to transportation, government process, manufacturing, oil and gas, IoT, pharmaceuticals, shipping. He has completed his Masters from Indian Institute of Technology(IIT), Kanpur in Artificial Intelligence. His research interests are distributed Machine Learning, Deep Learning, Stream Processing and Blockchain. He worked as mentor for various machine learning projects and trained others in Algorithm, Competitive Programming and Data Science.
His LinkedIn profile: https://www.linkedin.com/in/avijayvargiaDevelop and Implement your own Machine Learning Models to solve real world problems
Key Features
● Introduction to Machine Learning, Python and Jupyter
● Learn about Feature Engineering and Data Visualization using real world data sets
● Learn various regression and classification techniques
● Deep Learning and Neural network concepts and practical covered
● Text Analysis, Recommendation engines and Time Series Analysis
● Jupyter notebook scripts are provided with dataset used to test and try the algorithms
Description
This book provides concept of machine learning with mathematical explanation and programming examples. Every chapter starts with fundamentals of the technique and working example on real world dataset. Along with the advice on applying algorithms, each technique is provided with advantages and disadvantages on the data.
In this book we provide code examples in python. Python is the most suitable and worldwide accepted language for this. First, it is free and open source. It contains very good support from open community. It contains a lot of library, so you don’t need to code everything. Also, it is scalable for large amount of data and suitable for big data technologies.
What will you learn
Building machine learning model which is used in industries to solve data related problems.
Who this book is for
This book is helpful for all types of readers. Either you want to start in machine learning or want to learn the concepts more or practice with the code, it provides everything. We recommend users to learn the concept and practice it using sample code to get full of this book.
Table of Contents
1. Understanding Python
2. Feature Engineering
3. Data Visualisation
4. Basic and Advance Regression techniques
5. Classification
6. Un Supervised Learning
7. Text Analysis
8. Neural Network and Deep Learning
9. Recommendation System
10. Time Series Analysis
About the Author
Abhishek Vijayvargia is a Data Scientist. He worked in IT industry and helped in solving real time problems related to data science and Machine Learning. He worked on analytics problems related to transportation, government process, manufacturing, oil and gas, IoT, pharmaceuticals, shipping. He has completed his Masters from Indian Institute of Technology(IIT), Kanpur in Artificial Intelligence. His research interests are distributed Machine Learning, Deep Learning, Stream Processing and Blockchain. He worked as mentor for various machine learning projects and trained others in Algorithm, Competitive Programming and Data Science.
His LinkedIn profile: https://www.linkedin.com/in/avijayvargiaDevelop and Implement your own Machine Learning Models to solve real world problems
Key Features
● Introduction to Machine Learning, Python and Jupyter
● Learn about Feature Engineering and Data Visualization using real world data sets
● Learn various regression and classification techniques
● Deep Learning and Neural network concepts and practical covered
● Text Analysis, Recommendation engines and Time Series Analysis
● Jupyter notebook scripts are provided with dataset used to test and try the algorithms
Description
This book provides concept of machine learning with mathematical explanation and programming examples. Every chapter starts with fundamentals of the technique and working example on real world dataset. Along with the advice on applying algorithms, each technique is provided with advantages and disadvantages on the data.
In this book we provide code examples in python. Python is the most suitable and worldwide accepted language for this. First, it is free and open source. It contains very good support from open community. It contains a lot of library, so you don’t need to code everything. Also, it is scalable for large amount of data and suitable for big data technologies.
What will you learn
Building machine learning model which is used in industries to solve data related problems.
Who this book is for
This book is helpful for all types of readers. Either you want to start in machine learning or want to learn the concepts more or practice with the code, it provides everything. We recommend users to learn the concept and practice it using sample code to get full of this book.
Table of Contents
1. Understanding Python
2. Feature Engineering
3. Data Visualisation
4. Basic and Advance Regression techniques
5. Classification
6. Un Supervised Learning
7. Text Analysis
8. Neural Network and Deep Learning
9. Recommendation System
10. Time Series Analysis
About the Author
Abhishek Vijayvargia is a Data Scientist. He worked in IT industry and helped in solving real time problems related to data science and Machine Learning. He worked on analytics problems related to transportation, government process, manufacturing, oil and gas, IoT, pharmaceuticals, shipping. He has completed his Masters from Indian Institute of Technology(IIT), Kanpur in Artificial Intelligence. His research interests are distributed Machine Learning, Deep Learning, Stream Processing and Blockchain. He worked as mentor for various machine learning projects and trained others in Algorithm, Competitive Programming and Data Science.
His LinkedIn profile: https://www.linkedin.com/in/avijayvargiaDevelop and Implement your own Machine Learning Models to solve real world problems
Key Features
● Introduction to Machine Learning, Python and Jupyter
● Learn about Feature Engineering and Data Visualization using real world data sets
● Learn various regression and classification techniques
● Deep Learning and Neural network concepts and practical covered
● Text Analysis, Recommendation engines and Time Series Analysis
● Jupyter notebook scripts are provided with dataset used to test and try the algorithms
Description
This book provides concept of machine learning with mathematical explanation and programming examples. Every chapter starts with fundamentals of the technique and working example on real world dataset. Along with the advice on applying algorithms, each technique is provided with advantages and disadvantages on the data.
In this book we provide code examples in python. Python is the most suitable and worldwide accepted language for this. First, it is free and open source. It contains very good support from open community. It contains a lot of library, so you don’t need to code everything. Also, it is scalable for large amount of data and suitable for big data technologies.
What will you learn
Building machine learning model which is used in industries to solve data related problems.
Who this book is for
This book is helpful for all types of readers. Either you want to start in machine learning or want to learn the concepts more or practice with the code, it provides everything. We recommend users to learn the concept and practice it using sample code to get full of this book.
Table of Contents
1. Understanding Python
2. Feature Engineering
3. Data Visualisation
4. Basic and Advance Regression techniques
5. Classification
6. Un Supervised Learning
7. Text Analysis
8. Neural Network and Deep Learning
9. Recommendation System
10. Time Series Analysis
About the Author
Abhishek Vijayvargia is a Data Scientist. He worked in IT industry and helped in solving real time problems related to data science and Machine Learning. He worked on analytics problems related to transportation, government process, manufacturing, oil and gas, IoT, pharmaceuticals, shipping. He has completed his Masters from Indian Institute of Technology(IIT), Kanpur in Artificial Intelligence. His research interests are distributed Machine Learning, Deep Learning, Stream Processing and Blockchain. He worked as mentor for various machine learning projects and trained others in Algorithm, Competitive Programming and Data Science.
His LinkedIn profile: https://www.linkedin.com/in/avijayvargiaDevelop and Implement your own Machine Learning Models to solve real world problems
Key Features
● Introduction to Machine Learning, Python and Jupyter
● Learn about Feature Engineering and Data Visualization using real world data sets
● Learn various regression and classification techniques
● Deep Learning and Neural network concepts and practical covered
● Text Analysis, Recommendation engines and Time Series Analysis
● Jupyter notebook scripts are provided with dataset used to test and try the algorithms
Description
This book provides concept of machine learning with mathematical explanation and programming examples. Every chapter starts with fundamentals of the technique and working example on real world dataset. Along with the advice on applying algorithms, each technique is provided with advantages and disadvantages on the data.
In this book we provide code examples in python. Python is the most suitable and worldwide accepted language for this. First, it is free and open source. It contains very good support from open community. It contains a lot of library, so you don’t need to code everything. Also, it is scalable for large amount of data and suitable for big data technologies.
What will you learn
Building machine learning model which is used in industries to solve data related problems.
Who this book is for
This book is helpful for all types of readers. Either you want to start in machine learning or want to learn the concepts more or practice with the code, it provides everything. We recommend users to learn the concept and practice it using sample code to get full of this book.
Table of Contents
1. Understanding Python
2. Feature Engineering
3. Data Visualisation
4. Basic and Advance Regression techniques
5. Classification
6. Un Supervised Learning
7. Text Analysis
8. Neural Network and Deep Learning
9. Recommendation System
10. Time Series Analysis
About the Author
Abhishek Vijayvargia is a Data Scientist. He worked in IT industry and helped in solving real time problems related to data science and Machine Learning. He worked on analytics problems related to transportation, government process, manufacturing, oil and gas, IoT, pharmaceuticals, shipping. He has completed his Masters from Indian Institute of Technology(IIT), Kanpur in Artificial Intelligence. His research interests are distributed Machine Learning, Deep Learning, Stream Processing and Blockchain. He worked as mentor for various machine learning projects and trained others in Algorithm, Competitive Programming and Data Science.
His LinkedIn profile: https://www.linkedin.com/in/avijayvargiaDevelop and Implement your own Machine Learning Models to solve real world problems
Key Features
● Introduction to Machine Learning, Python and Jupyter
● Learn about Feature Engineering and Data Visualization using real world data sets
● Learn various regression and classification techniques
● Deep Learning and Neural network concepts and practical covered
● Text Analysis, Recommendation engines and Time Series Analysis
● Jupyter notebook scripts are provided with dataset used to test and try the algorithms
Description
This book provides concept of machine learning with mathematical explanation and programming examples. Every chapter starts with fundamentals of the technique and working example on real world dataset. Along with the advice on applying algorithms, each technique is provided with advantages and disadvantages on the data.
In this book we provide code examples in python. Python is the most suitable and worldwide accepted language for this. First, it is free and open source. It contains very good support from open community. It contains a lot of library, so you don’t need to code everything. Also, it is scalable for large amount of data and suitable for big data technologies.
What will you learn
Building machine learning model which is used in industries to solve data related problems.
Who this book is for
This book is helpful for all types of readers. Either you want to start in machine learning or want to learn the concepts more or practice with the code, it provides everything. We recommend users to learn the concept and practice it using sample code to get full of this book.
Table of Contents
1. Understanding Python
2. Feature Engineering
3. Data Visualisation
4. Basic and Advance Regression techniques
5. Classification
6. Un Supervised Learning
7. Text Analysis
8. Neural Network and Deep Learning
9. Recommendation System
10. Time Series Analysis
About the Author
Abhishek Vijayvargia is a Data Scientist. He worked in IT industry and helped in solving real time problems related to data science and Machine Learning. He worked on analytics problems related to transportation, government process, manufacturing, oil and gas, IoT, pharmaceuticals, shipping. He has completed his Masters from Indian Institute of Technology(IIT), Kanpur in Artificial Intelligence. His research interests are distributed Machine Learning, Deep Learning, Stream Processing and Blockchain. He worked as mentor for various machine learning projects and trained others in Algorithm, Competitive Programming and Data Science.
His LinkedIn profile: https://www.linkedin.com/in/avijayvargia
Relaterte titler
Journal for Studies in Management and Planning
Journal of Contradicting Results in Science
Journal of Advanced Research in Medicine - Volume 3 - 2016
Journal of Advanced Research in English & Education - Volume 2 - 2017
Journal of Advanced Research in Ayurveda, Yoga, Unani, Siddha and Homeopathy - Volume 1 - 2014
Journal of Advanced Research in Humanities and Social Science - Volume 3 - 2016
Journal of Advanced Research in Dental and Oral Health - Volume 3 - 2018
Journal of advanced research in psychology & psychotherapy - Volume 1 - 2018
Indian Journal of Youth and Adolescent Health - Volume 6 - 2019
Journal of Advanced Research in Aeronautics and Space Science - Volume 3 - 2016
Journal of Advanced Research in Medical Science and Technology - Volume 1 - 2014
Journal of Advanced Research in Medicine - Volume 2 - 2015
Journal of Advanced Research in English & Education - Volume 3 - 2018
Journal of Advanced Research in English & Education - Volume 4 - 2019
International Journal of Healthcare Education & Medical Informatics - Volume 2 - 2015
Journal of Advanced Research in Production and Industrial Engineering Volume 4 2017
Journal of Advanced Research in Civil and Environmental Engineering - Volume 2 - 2015
Journal of Advanced Research in Ayurveda, Yoga, Unani, Siddha and Homeopathy - Volume 4 - 2017
Journal of advanced research in psychology & psychotherapy - Volume 2 - 2019
International Journal of Law, Human Rights and Constitutional Studies - Volume 2 - 2015
Journal of Advanced Research in Dental and Oral Health - Volume 1 - 2016
Epidemiology International - Volume 3 - 2018
Journal of Advanced Research in Ayurveda, Yoga, Unani, Siddha and Homeopathy - Volume 3 - 2016
Journal of Advanced Research in Ayurveda, Yoga, Unani, Siddha and Homeopathy - Volume 5 - 2018
Journal of Advanced Research in Manufacturing, Material Science&Metallurgical Engineering Vol 1 2014
Journal of Advanced Research in Humanities and Social Science - Volume 4 - 2017
Journal Communicable Diseases - Volume 48 - 2016
Journal of Advanced Research in Aeronautics and Space Science - Volume 1 - 2014
Journal of Advanced Research in Ayurveda, Yoga, Unani, Siddha and Homeopathy - Volume 2 - 2015
Recent Advances in Pathology & Laboratory Medicine (RAPL) - Volume 5 -2019