Gå ubegrenset med Magzter GOLD

Gå ubegrenset med Magzter GOLD

Få ubegrenset tilgang til over 9000 magasiner, aviser og premiumhistorier for bare

$149.99
 
$74.99/År

Prøve GULL - Gratis

Gå ubegrenset med Magzter GOLD

Gå ubegrenset med Magzter GOLD

Få ubegrenset tilgang til over 9000 magasiner, aviser og premiumhistorier for bare

$NaN
 
$NaN/År

Skynd deg, tilbud i begrenset periode!

0

Timer

0

minutter

0

sekunder

.

Concepts and Programming in PyTorch - First Edition 2018

filled-star
Concepts and Programming in PyTorch

Gå ubegrenset med Magzter GOLD

Lese Concepts and Programming in PyTorch sammen med 9000+ andre magasiner og aviser med bare ett abonnement  

Se katalog

1 måned

$14.99

1 år $149.99

$74.99

$6/month

Save 50%
Hurry, Offer Ends in 8 Days

(OR)

Abonner kun på Concepts and Programming in PyTorch

Kjøp denne utgaven: First Edition 2018

undefined problemer som starter fra First Edition 2018

undefined problemer som starter fra First Edition 2018

Kjøp denne utgaven

$2.99

Please choose your subscription plan

Avbryt når som helst.

(Ingen forpliktelser) ⓘ

Hvis du ikke er fornøyd med abonnementet, kan du sende oss en e-post på help@magzter.com innen 7 dager etter abonnementets startdato for full refusjon. Ingen spørsmål - lover! (Merk: Gjelder ikke for enkeltutgavekjøp)

Digitalt abonnement

Øyeblikkelig tilgang ⓘ

Abonner nå for å begynne å lese umiddelbart på Magzter-nettstedet, iOS, Android og Amazon-appene.

Verifisert sikker

betaling ⓘ

Magzter er en verifisert Authorize.Net-forhandler. Les mer

I dette nummeret

Concepts and Programming in PyTorch - First Edition 2018

Concepts and Programming in PyTorch Description:

Learn to Demystify the neural networks with PyTorch

Key Features

● Basics concepts of PyTorch including CNN and RNN architecture are discussed in detailed manner.

● The worked out case studies are dealt in a detailed manner.

● Each chapter concludes with the observations of PyTorch to facilitate a better understanding of PyTorch.

● Abundant worked out coding examples.

● Highly self-explanatory and user-friendly approach.

Description

Book is written in a lucid manner to explain concepts in detail, with adequate emphasis on examples. To make clarity on the programming examples, logic is accurately explained and discussed through comments in the program itself. The topics covered in this book include starting the software through coding in software and writing programs.

The book features more on practical approach through ample examples covering simple to complex topics that address many core concepts and advanced topics.

What will you learn

● Linear Regression

● Convolution Neural Network (CNN)

● Recurrent Neural Network (RNN)

● PyTorch Datasets

Who this book is for

● Graduate Students- Computer Science/ CSE / IT/ Computer Applications

● Master Class Students—Msc (CS/IT)/ MCA/ M.Phil, M.Tech, M.S.

● Researcher’s—Ph.D Research Scholars

Table of Contents

1. Introduction to PyTorch

2. Linear Regression

3. Convolution Neural Network (CNN)

4. Recurrent Neural Network (RNN)

5. PyTorch Datasets

6. Observation in PyTorch

About the Author

Chitra Vasudevan is a Technical director of the software company who had wide experience in Maths and Computer Science for more than 25+ years. Basically she is a Mainframe Specialist with the Knowledge of DB2, VSAM, IDMS, IMS Databases. She worked in the client server Architecture too with PowerBuilder, JAVA, VB, VC++. Apart from this she is an ISO 9000 certified Auditor and also a CMM Process oriented person. She had developed a lot of tools and apps in the field of Computer Science.

She had passed her M.Sc, M.Phil degree in Mathematics and is a Gold Medalist in Mathematics too. Later she entered in the field of Computer science and she worked as M.S. BITS Pilani Mentor for Software Engineering and Computer Design technology. Learn to Demystify the neural networks with PyTorch

Key Features

● Basics concepts of PyTorch including CNN and RNN architecture are discussed in detailed manner.

● The worked out case studies are dealt in a detailed manner.

● Each chapter concludes with the observations of PyTorch to facilitate a better understanding of PyTorch.

● Abundant worked out coding examples.

● Highly self-explanatory and user-friendly approach.

Description

Book is written in a lucid manner to explain concepts in detail, with adequate emphasis on examples. To make clarity on the programming examples, logic is accurately explained and discussed through comments in the program itself. The topics covered in this book include starting the software through coding in software and writing programs.

The book features more on practical approach through ample examples covering simple to complex topics that address many core concepts and advanced topics.

What will you learn

● Linear Regression

● Convolution Neural Network (CNN)

● Recurrent Neural Network (RNN)

● PyTorch Datasets

Who this book is for

● Graduate Students- Computer Science/ CSE / IT/ Computer Applications

● Master Class Students—Msc (CS/IT)/ MCA/ M.Phil, M.Tech, M.S.

● Researcher’s—Ph.D Research Scholars

Table of Contents

1. Introduction to PyTorch

2. Linear Regression

3. Convolution Neural Network (CNN)

4. Recurrent Neural Network (RNN)

5. PyTorch Datasets

6. Observation in PyTorch

About the Author

Chitra Vasudevan is a Technical director of the software company who had wide experience in Maths and Computer Science for more than 25+ years. Basically she is a Mainframe Specialist with the Knowledge of DB2, VSAM, IDMS, IMS Databases. She worked in the client server Architecture too with PowerBuilder, JAVA, VB, VC++. Apart from this she is an ISO 9000 certified Auditor and also a CMM Process oriented person. She had developed a lot of tools and apps in the field of Computer Science.

She had passed her M.Sc, M.Phil degree in Mathematics and is a Gold Medalist in Mathematics too. Later she entered in the field of Computer science and she worked as M.S. BITS Pilani Mentor for Software Engineering and Computer Design technology. Learn to Demystify the neural networks with PyTorch

Key Features

● Basics concepts of PyTorch including CNN and RNN architecture are discussed in detailed manner.

● The worked out case studies are dealt in a detailed manner.

● Each chapter concludes with the observations of PyTorch to facilitate a better understanding of PyTorch.

● Abundant worked out coding examples.

● Highly self-explanatory and user-friendly approach.

Description

Book is written in a lucid manner to explain concepts in detail, with adequate emphasis on examples. To make clarity on the programming examples, logic is accurately explained and discussed through comments in the program itself. The topics covered in this book include starting the software through coding in software and writing programs.

The book features more on practical approach through ample examples covering simple to complex topics that address many core concepts and advanced topics.

What will you learn

● Linear Regression

● Convolution Neural Network (CNN)

● Recurrent Neural Network (RNN)

● PyTorch Datasets

Who this book is for

● Graduate Students- Computer Science/ CSE / IT/ Computer Applications

● Master Class Students—Msc (CS/IT)/ MCA/ M.Phil, M.Tech, M.S.

● Researcher’s—Ph.D Research Scholars

Table of Contents

1. Introduction to PyTorch

2. Linear Regression

3. Convolution Neural Network (CNN)

4. Recurrent Neural Network (RNN)

5. PyTorch Datasets

6. Observation in PyTorch

About the Author

Chitra Vasudevan is a Technical director of the software company who had wide experience in Maths and Computer Science for more than 25+ years. Basically she is a Mainframe Specialist with the Knowledge of DB2, VSAM, IDMS, IMS Databases. She worked in the client server Architecture too with PowerBuilder, JAVA, VB, VC++. Apart from this she is an ISO 9000 certified Auditor and also a CMM Process oriented person. She had developed a lot of tools and apps in the field of Computer Science.

She had passed her M.Sc, M.Phil degree in Mathematics and is a Gold Medalist in Mathematics too. Later she entered in the field of Computer science and she worked as M.S. BITS Pilani Mentor for Software Engineering and Computer Design technology. Learn to Demystify the neural networks with PyTorch

Key Features

● Basics concepts of PyTorch including CNN and RNN architecture are discussed in detailed manner.

● The worked out case studies are dealt in a detailed manner.

● Each chapter concludes with the observations of PyTorch to facilitate a better understanding of PyTorch.

● Abundant worked out coding examples.

● Highly self-explanatory and user-friendly approach.

Description

Book is written in a lucid manner to explain concepts in detail, with adequate emphasis on examples. To make clarity on the programming examples, logic is accurately explained and discussed through comments in the program itself. The topics covered in this book include starting the software through coding in software and writing programs.

The book features more on practical approach through ample examples covering simple to complex topics that address many core concepts and advanced topics.

What will you learn

● Linear Regression

● Convolution Neural Network (CNN)

● Recurrent Neural Network (RNN)

● PyTorch Datasets

Who this book is for

● Graduate Students- Computer Science/ CSE / IT/ Computer Applications

● Master Class Students—Msc (CS/IT)/ MCA/ M.Phil, M.Tech, M.S.

● Researcher’s—Ph.D Research Scholars

Table of Contents

1. Introduction to PyTorch

2. Linear Regression

3. Convolution Neural Network (CNN)

4. Recurrent Neural Network (RNN)

5. PyTorch Datasets

6. Observation in PyTorch

About the Author

Chitra Vasudevan is a Technical director of the software company who had wide experience in Maths and Computer Science for more than 25+ years. Basically she is a Mainframe Specialist with the Knowledge of DB2, VSAM, IDMS, IMS Databases. She worked in the client server Architecture too with PowerBuilder, JAVA, VB, VC++. Apart from this she is an ISO 9000 certified Auditor and also a CMM Process oriented person. She had developed a lot of tools and apps in the field of Computer Science.

She had passed her M.Sc, M.Phil degree in Mathematics and is a Gold Medalist in Mathematics too. Later she entered in the field of Computer science and she worked as M.S. BITS Pilani Mentor for Software Engineering and Computer Design technology. Learn to Demystify the neural networks with PyTorch

Key Features

● Basics concepts of PyTorch including CNN and RNN architecture are discussed in detailed manner.

● The worked out case studies are dealt in a detailed manner.

● Each chapter concludes with the observations of PyTorch to facilitate a better understanding of PyTorch.

● Abundant worked out coding examples.

● Highly self-explanatory and user-friendly approach.

Description

Book is written in a lucid manner to explain concepts in detail, with adequate emphasis on examples. To make clarity on the programming examples, logic is accurately explained and discussed through comments in the program itself. The topics covered in this book include starting the software through coding in software and writing programs.

The book features more on practical approach through ample examples covering simple to complex topics that address many core concepts and advanced topics.

What will you learn

● Linear Regression

● Convolution Neural Network (CNN)

● Recurrent Neural Network (RNN)

● PyTorch Datasets

Who this book is for

● Graduate Students- Computer Science/ CSE / IT/ Computer Applications

● Master Class Students—Msc (CS/IT)/ MCA/ M.Phil, M.Tech, M.S.

● Researcher’s—Ph.D Research Scholars

Table of Contents

1. Introduction to PyTorch

2. Linear Regression

3. Convolution Neural Network (CNN)

4. Recurrent Neural Network (RNN)

5. PyTorch Datasets

6. Observation in PyTorch

About the Author

Chitra Vasudevan is a Technical director of the software company who had wide experience in Maths and Computer Science for more than 25+ years. Basically she is a Mainframe Specialist with the Knowledge of DB2, VSAM, IDMS, IMS Databases. She worked in the client server Architecture too with PowerBuilder, JAVA, VB, VC++. Apart from this she is an ISO 9000 certified Auditor and also a CMM Process oriented person. She had developed a lot of tools and apps in the field of Computer Science.

She had passed her M.Sc, M.Phil degree in Mathematics and is a Gold Medalist in Mathematics too. Later she entered in the field of Computer science and she worked as M.S. BITS Pilani Mentor for Software Engineering and Computer Design technology. Learn to Demystify the neural networks with PyTorch

Key Features

● Basics concepts of PyTorch including CNN and RNN architecture are discussed in detailed manner.

● The worked out case studies are dealt in a detailed manner.

● Each chapter concludes with the observations of PyTorch to facilitate a better understanding of PyTorch.

● Abundant worked out coding examples.

● Highly self-explanatory and user-friendly approach.

Description

Book is written in a lucid manner to explain concepts in detail, with adequate emphasis on examples. To make clarity on the programming examples, logic is accurately explained and discussed through comments in the program itself. The topics covered in this book include starting the software through coding in software and writing programs.

The book features more on practical approach through ample examples covering simple to complex topics that address many core concepts and advanced topics.

What will you learn

● Linear Regression

● Convolution Neural Network (CNN)

● Recurrent Neural Network (RNN)

● PyTorch Datasets

Who this book is for

● Graduate Students- Computer Science/ CSE / IT/ Computer Applications

● Master Class Students—Msc (CS/IT)/ MCA/ M.Phil, M.Tech, M.S.

● Researcher’s—Ph.D Research Scholars

Table of Contents

1. Introduction to PyTorch

2. Linear Regression

3. Convolution Neural Network (CNN)

4. Recurrent Neural Network (RNN)

5. PyTorch Datasets

6. Observation in PyTorch

About the Author

Chitra Vasudevan is a Technical director of the software company who had wide experience in Maths and Computer Science for more than 25+ years. Basically she is a Mainframe Specialist with the Knowledge of DB2, VSAM, IDMS, IMS Databases. She worked in the client server Architecture too with PowerBuilder, JAVA, VB, VC++. Apart from this she is an ISO 9000 certified Auditor and also a CMM Process oriented person. She had developed a lot of tools and apps in the field of Computer Science.

She had passed her M.Sc, M.Phil degree in Mathematics and is a Gold Medalist in Mathematics too. Later she entered in the field of Computer science and she worked as M.S. BITS Pilani Mentor for Software Engineering and Computer Design technology.

Relaterte titler

Populære kategorier