The Engineers' Daughter
The Atlantic|November 2021
James and Lindsay Sulzer have spent their careers developing technologies to help people recover from disease or injury. A freak accident changed their work—and lives—forever.
By Daniel Engber

The last words that Liviana Sulzer spoke, 18 months ago, were very much in character: “Now it’s time for a song.” This was often how she felt, living as she did inside a toddler movie-musical, where even just a spilled cup of milk could get her up onto a chair, twirling with her arms out wide and singing as loud as she could manage: We just spilled our milk … It was messy on the table, and then we cleaned it up … And noooow it’s aaaaall cleeeaaaned up! When the song was over, she’d bend toward her brothers, ages 6 and 1, in a deep and gracious bow.

It was May 2020—a week before Livie’s fourth birthday— and the kids were playing in the yard. Throughout the Sulzers’ quiet neighborhood in Austin, Texas, the Persian silk trees had begun to bloom in pink-tipped puffs. There were flowers in their backyard, too. Livie had a favorite one, purple and about as tall as she was. She called it Dr. Iris and, trapped at home by the COVID-19 shutdown, she’d made a game of scooting over to it in her push-car and spilling all her problems. (She often couldn’t think of any when she got there.)

But the loneliest phase of the pandemic, with its makeshift games and spotty child care, was nearly over. Things were getting back to normal. A nanny had started just over a week before, and Livie’s mother, Lindsay—a bioengineer and expert in regenerative medicine—was headed to the office for her first day back at work, at a local cell-therapy start-up. Livie’s father, James, an assistant professor at the University of Texas at Austin who specializes in rehabilitation robotics, was grading papers in the walk-in closet that he’d turned into a home office. He’d asked his graduate students to propose studies or devices that might one day help a patient recover from a nervous-system injury.

The sky was clear and calm and sunny. Livie stood near the center of the yard, 30 feet below the overhanging branches of a pecan tree. Her two brothers were nearby.

“Now it’s time for a song,” she announced.

There was a crack, a whoosh, a scream.

LIVIE WAS UNCONSCIOUS when the EMTs arrived, her eyelids fluttering. In the ambulance, James overheard someone say “blown right pupil.” He didn’t know what that implied. A falling tree branch had knocked his daughter out, but there wasn’t any blood. How bad could it be?

At Dell Children’s Medical Center, a neurosurgeon named Winson Ho knew right away that it was bad—really bad. Livie’s blown pupil, the fact that it was dilated and unresponsive to light, told him that her brain had been swelling for some time, pressed against the inside of her skull. Without rapid intervention, she could die. A CT scan showed a thick fracture across her crown that forked into a pair of smaller, twig-like cracks—as if the branch’s shape had been imprinted in her bone. In the operating room, Ho carved out a piece of Livie’s skull, four inches wide and six long, to give her brain more space to bloat. If an older person had come in with that same degree of injury, he’d later say, doctors and family might have chosen not to intervene.

Livie spent the next two weeks in a coma. She had lesions on her right sensorimotor cortex, her left orbitofrontal cortex, and the tract of fibers called the corpus callosum that connects the brain's two hemispheres. James remembers being told that Livie might end up with a little trouble walking, and some difficulty concentrating on math problems. “It was devastating to think that she’d be permanently injured,” he said.

In a grim coincidence, he’d spent his whole career devising ways to fix a damaged nervous system, and Lindsay had once worked on isolating stem cells out of body fat, an approach that has been used to treat traumatic brain injuries (TBIs) such as Livie’s. The two had met as graduate students at Northwestern University in 2004; James had been training at the affiliated Rehabilitation Institute of Chicago, one of the world’s leading hospitals for physical medicine and rehab. Between the two of them, James and Lindsay had decades of experience in biomedicine, and a large network of professional connections. “There’s no treatment out there that we don’t have access to,” James told me.

While Livie was in the ICU, James reached out to friends and colleagues and asked them for advice: Which treatments should they try with Livie in the weeks ahead? Which technologies might help? He also started coming up with notions of his own. At the hospital, James and Lindsay had to stretch out Livie’s joints three times a day to help prevent contractures, a shortening of the muscle fibers that can result in lasting disability. There must be some way to automate the stretching, James thought— perhaps he could design a robot that did it better and more often. “I was looking for opportunities to apply what I knew to help her,” he said. But eventually he abandoned the idea. Building the stretching bot would take months, he realized— and even then it might end up pushing Livie’s tiny joints too far and hurting her.

The risk of contractures soon gave way to other, graver ones. After two weeks, Livie came out of her coma, though only to a point. Her eyes were open now and she was breathing on her own, but she wasn’t making any sounds or responding to the world around her. “When Livie starts talking again, what will she sound like?” her older brother, Noah, asked his parents at one point. “She had such a cute voice.”

Her voice returned, a few weeks later, in the form of wounded, mouselike shrieks—a high-pitched din of pain or maybe fear as she emerged from a semiconscious state. In mid-July, James flew with Livie to the Kennedy Krieger Institute in Baltimore, well known for its work with TBI in children; Lindsay took the boys to stay with family in Cleveland. (The parents would trade places twice a month.) In Baltimore, they rarely left their daughter’s side, sleeping on a fold-out chair in her room, haunted by the sounds of her discomfort. The only way to make her shrieking stop, James found, was by giving her koala hugs: She was the bear; he was the tree.

As the founder of UT’s Cellular to Clinically Applied Rehabilitation Research and Engineering Initiative, James had seen a thousand clever fixes for a person’s brain: neural stimulators and electrode caps; full-body exoskeletons; sleek, motorized contraptions that facilitated movement at a single joint. At his lab there was a split-belt treadmill that could measure the force of each footstep. His colleague had a robot that could assist the movement of both arms at once.

James has always been a builder. In high school he was into woodshop, making coffee tables and armoires; later, he interned at Alcoa, the aluminum company, where he saw a massive forging press make wheels for trucks. As a college sophomore, he learned about advances in prosthetics, and it occurred to him that tinkering could serve a greater good. A boom was underway in the field of rehabilitation robotics; in graduate school, James made a powered brace to help stroke survivors bend their knees. Later, he shifted his focus to the brain itself, designing tools for neuro-feedback that used multimillion-dollar MRI machines to nudge a person’s cortex into making new connections.

Working in an engineering lab, one tends to fixate on the engineering challenge: building the device. Whom exactly the device is for and what sorts of injuries it can help address are secondary concerns. Now that logic had flipped around as James sat beside his daughter. He knew that Livie’s brain could still send signals to her muscles, even if those signals weren’t strong enough—or clear enough—to make her muscles work. So he came up with a way for Livie to exercise her neurons while her body remained still. With the help of a graduate student, he attached electrodes to her limbs and neck, to pick up even feeble spurts of muscle activation; then he linked them to a music playlist. Whenever Livie twitched her biceps or her triceps, even just a tiny bit, a favorite song, such as “Baby Shark,” would play a little louder.

The electrode gadget checked all of James’s boxes for design: It allowed Livie to participate in her own recovery; it encouraged her to practice; it made use of neural information that a doctor or a parent might never see during a normal course of treatment. Yet it proved as useless for Livie as the stretching bot that James had only pictured in his head. For one thing, placing the muscle sensors took too much time, time that could be spent on other forms of therapy; he also couldn’t tell whether Livie understood the point, that she should try to make the music louder; and even if these other problems could be solved, Livie’s muscles were so small that some activation might be missed.

Livie was making progress now, but in slow motion. In September, she moved back to Austin, where she started doing therapy sessions at home (nine hours every week, plus 30 more of exercise and “therapeutic recreation”) and as an outpatient at Dell Children’s (another seven hours). Still, she wasn’t quite responsive; her eyes were misaligned; her head was cocked off to the left and couldn’t seem to straighten up. She had trouble swallowing and had to take her meals through a tube connected to her stomach. Her right arm worked a bit, and her left leg too, but she hadn’t figured out a way of rolling over. James and Lindsay knew about the crucial, early window for reshaping and remapping the brain—in many cases, a person’s progress in the first few weeks or months after an injury can predict how things play out in the long term. The level of recovery they’d once imagined now seemed like foolish optimism.

In the months that followed, Lindsay took on the Herculean tasks of arranging Livie’s care—hiring nurses and personal attendants, procuring equipment such as wheelchairs, and setting up a never-ending carousel of feedings, medicine, and exercise, all while wrestling the Hydra of insurance claims. Lindsay also puts in a few hours a week at her cell therapy start-up, and attends to her younger son, Reed, now 2 years old and almost always seeking her attention.

James assumed the role of in-house rehab scientist: the family’s principal investigator into Livie’s injury, and its chief adviser on how to treat her most effectively. Nature’s whim had put his daughter in this awful place. Technology would help to bring her back. “I feel this weight of responsibility,” he told me, “given what I feel I should know about the field.”

SHORTLY AFTER LIVIE’S ACCIDENT, while she was still unconscious in the ICU, James reached out to another dad he knew in Austin—a guy in commercial real estate named Barney Sinclair whose own daughter Charley had been injured several years before, when she was roughly Livie’s age. Barney had been headed out to Oklahoma with three kids in the car. The highway was wet with rain; another car hydroplaned across the median and Barney smashed into its side. Charley’s brain, like Livie’s, started swelling in her skull; surgeons had to drill a hole to reduce the pressure.

Charley was treated at the same hospital as Livie would be. Barney, feeling helpless, started asking questions of her doctors and nurses: If I were Bill Gates, he’d say to them, what would I be doing to help my daughter? You know, like, if resources were not an issue? Eventually he landed on robotics, and in 2018 he started a nonprofit—he called it Project Charley— with a plan to purchase gait-training bots and other high-tech tools for rehab clinics in the Austin area. Charley would get the benefit of using them, and so would other people like her.

That’s when James and Barney met. “I’m a real estate guy, right? I build warehouses,” Barney told me. “I don’t know what equipment to buy, but I know how to tap into the smartest people in Austin and let them help me make smart decisions.” So he visited James’s lab and saw the split-belt treadmill and the two-armed robot; the dads had lunch and talked about virtual-reality therapies and rehab gadgets that seemed to have potential. “He was so gracious with his time. It’s just tragically ironic that this happened to him [a few] years later, and he was calling me,” Barney said. “The thing that I kept going back to was that it was going to be okay, that we were happy, and that he’s going to get there but it’s going to be just unbelievably tough.”

Continue reading your story on the app

Continue reading your story in the magazine

MORE STORIES FROM THE ATLANTICView All

Unhappy Returns

What really happens to all the pants that don’t fit

10+ mins read
The Atlantic
November 2021

THE END OF TRUST

Suspicion is undermining the American economy.

7 mins read
The Atlantic
December 2021

UNWRAPPERS' DELIGHT

Americans can’t resist the lure of elaborate packaging.

10 mins read
The Atlantic
December 2021

Snowbirds

Photographs by Naomi Harris

2 mins read
The Atlantic
December 2021

THE AUTOCRATS ARE WINNING

If the 20th century was the story of liberal democracy’s progress toward victory over other ideologies— communism, fascism, virulent nationalism— the 21st century is, so far, a story of the reverse.

10+ mins read
The Atlantic
December 2021

How Self-Reliant Was Emerson?

Transcendentalism, the American philosophy that championed the individual, emerged from an exceptionally tight-knit community.

10+ mins read
The Atlantic
December 2021

The Antiquities Cop

Matthew Bogdanos is on a mission to prosecute the wealthy dealers and collectors who traffic in the looted relics of ancient civilizations.

10+ mins read
The Atlantic
December 2021

Shape-Shifting Animals on an Inhospitable Planet

Lizards’ feet are morphing, squid are shrinking, butterflies’ wings are growing stronger.

10 mins read
The Atlantic
December 2021

The Miraculous Sound of Forgiveness

In his thrillingly transgressive opera The Marriage of Figaro, Mozart pulled off his most amazing musical feat.

10+ mins read
The Atlantic
December 2021

The Martial Art I Can't Live Without

Brazilian jiu-jitsu has been compared to chess, philosophy, even psychoanalysis. But its real appeal is on the mat.

7 mins read
The Atlantic
December 2021